EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB.

نویسندگان

  • O Lomovskaya
  • K Lewis
  • A Matin
چکیده

The emrAB locus of Escherichia coli encodes a multidrug resistance pump that protects the cell from several chemically unrelated antimicrobial agents, e.g., the protonophores carbonyl cyanide m-chlorophenylhydrazone (CCCP) and tetrachlorosalicyl anilide and the antibiotics nalidixic acid and thiolactomycin. The mprA gene is located immediately upstream of this locus and was shown to be a repressor of microcin biosynthesis (I. del Castillo, J. M. Gomez, and F. Moreno, J. Bacteriol. 173:3924-3929, 1991). There is a putative transcriptional terminator sequence between the mprA and emrA genes. To locate the emr promoter, single-copy lacZ operon fusions containing different regions of the emr locus were made. Only fusions containing the mprA promoter region were expressed. mprA is thus the first gene of the operon, and we propose that it be renamed emrR. Overproduction of the EmrR protein (with a multicopy vector containing the cloned emrR gene) suppressed transcription of the emr locus. A mutation in the emrR gene led to overexpression of the EmrAB pump and increased resistance to antimicrobial agents. CCCP, nalidixic acid, and a number of other structurally unrelated chemicals induced expression of the emr genes, and the induction required EmrR. We conclude that emrRAB genes constitute an operon and that EmrR serves as a negative regulator of this operon. Some of the chemicals that induce the pump serve as its substrates, suggesting that their extrusion is the natural function of the pump.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification and ligand binding of EmrR, a regulator of a multidrug transporter.

EmrR, the repressor of the emrRAB operon of Escherichia coli, was purified to 95% homogeneity. EmrR was found to bind putative ligands of the EmrAB pump-2,4-dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, and carbonyl cyanide p-(trifluoro-methoxy)phenylhydrazone-with affinities in the micromolar range. Equilibrium dialysis experiments suggested one bound ligand per monomer of the dimer...

متن کامل

The EmrR protein represses the Escherichia coli emrRAB multidrug resistance operon by directly binding to its promoter region.

EmrR negatively regulates the transcription of the multidrug resistance pump-encoding operon, emrRAB, by binding to its regulatory region. The binding site spans the promoter and the downstream sequence up to the transcriptional start site of the operon. Structurally unrelated drugs that induce the pump interfere with this binding.

متن کامل

Detection of Efflux Pumps Genes in Fluoroquinolones Resistant and Sensitive strains of Escherichia coli isolated from Patients with Urinary Tract Infection in Qom

Abstract Background and Objectives: Efflux pumps are one of the main mechanisms for antibiotic resistance in Escherichia coli strains. The aim of this study was to investigate the relationship between 5 different efflux pump genes; acrA, acrB, emrA, emrB and mdtk and fluoroquinolone resistance in E.coli Isolated from patients with urinary tract infections in Qom. Methods: In this descriptive cr...

متن کامل

Multidrug Resistance in Infants and Children

Bacterial infections may cause disease and death. Infants and children are often subject to bacterial infections. Antimicrobials kill bacteria protecting the infected patients andreducing the risk of morbidity and mortality caused by bacteria. The antibiotics may lose their antibacterial activity when they become resistant to a bacteria. The resistance to different antibiotics in a bacteria is ...

متن کامل

Multiresistance genes of Rhizobium etli CFN42.

Multidrug efflux pumps of bacteria are involved in the resistance to various antibiotics and toxic compounds. In Rhizobium etli, a mutualistic symbiont of Phaseolus vulgaris (bean), genes resembling multidrug efflux pump genes were identified and designated rmrA and rmrB. rmrA was obtained after the screening of transposon-generated fusions that are inducible by bean-root released flavonoids. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 177 9  شماره 

صفحات  -

تاریخ انتشار 1995